ASYMMETRIC QUINONE-BASED DIELS-ALDER REACTIONS

Thomas A. Engler,* Michael A. Letavic and Fusao Takusagawa Department of Chemistry, University of Kansas, Lawrence, Kansas 66045

ABSTRACT. Asymmetric Diels-Alder reactions of 2-methoxy-1,4-benzoquinones utilizing a chiral Ti(IV) complex as a Lewis acid promoter are reported.

The Diels-Alder reaction is generally acknowledged as one of the most powerful synthetic tools. 1,4-Benzoquinones have particular notoriety in these reactions due to their superb reactivity, their high and predictable stereoselectivity and the broad utility of the products in stereoselective synthesis of a wide variety of targets through routine modification.¹ In view of this, it is surprising that asymmetric quinonebased Diels-Alder reactions, particularly those involving chiral catalysts, have received relatively little attention.² Reports from Narasaka and co-workers^{3a-d} on asymmetric Diels-Alder reactions of oxazolidinone dienophiles catalyzed by chiral complexes of the type $(RO)_2 TiCl_2$ and our own recent studies on the application of these complexes to asymmetric reactions of quinones with styrenes⁴ led us to examine quinone Diels-Alder reactions. The recent reports of Corey^{3e}, Oh^{3f} and Quinkert^{3g} on Diels-Alder reactions utilizing similar chiral Lewis acid catalysts prompts us to report our results at this time.

Addition of 2-methoxy-1,4-benzoquinones 1a/b to a complex formed from TiCl₄, Ti(OiPr)₄ and the (+)-diol 3 (vide infra) followed by dienes 2 gave the Diels-Alder products 4 or 5 in excellent yield and moderate to excellent stereoselectivity and enantioselectivity (Table). The high crystallinity of the products is a notable advantage. In several cases (entries 1-5), the experiments have been scaled up to provide gram quantities of a single enantiomer by simple recrystallization of the reaction products (EtOAc: hexanes or THF: hexanes). The enantiometric purity of the products was determined by 500-MHz ¹H NMR analysis with (R)-(-)-2,2,2-trifluoro-1-(9-anthryl)ethanol as a chiral solvating agent. The assignment

For compounds 2 and 4: a, $R^3-R^5=H$; b, $R^3=CH_3$, $R^4-R^5=H$; c, $R^3=CH(CH_3)_2$, $R^4-R^5=H$; d, $R^3=(CH_2)_2OCH_3$, $R^4-R^5=H$; e, $R^3-R^4=-(CH_2)_4-$, $R^5=H$; f, $R^3=R^5=H$, $R^4=CH_3$; g, $R^3=R^5=H$, $R^4=CH(CH_3)_2$. of relative stereochemistry of the major isomers was established by NOE and HMBC NMR experiments (Figure).⁵ To assign the absolute configuration of the products, compound **4b** was converted to **6**, the structure of which was determined by single crystal X-ray analysis.⁶ Since the sign of the specific rotations, the shape of the ORD curves and the ¹H NMR spectra in the presence of the chiral solvating agent are similar for all of the Diels-Alder products **4a-g**, their configurations are likely the same as well.

The method for preparation of the Ti(IV)-diol complex used in these reactions is critical. Best results to date⁷ involve the formation of a "Ti(IV)-solid" by precipitation of a light yellow powder from a 5:1 mixture of TiCl₄ and Ti(OiPr)₄ in CH₂Cl₂ at room temperature. The structure of this material is not known. For the Diels-Alder reactions, the diol is added to the "Ti(IV)-solid" in a 1.5:1 ratio by weight in PhCH₃ at -78°C followed by warming to room temperture and then re-cooling to -78°C. A solution of the quinone in CH₂Cl₂ and then the diene are added at -78°C; the diol:quinone:diene ratio is 2:1:2. The excess diol is readily reclaimed on chromatography of the crude reaction mixture.

Narasaka and Corey have reported asymmetric catalysis of $N-\alpha$. β -alkenoyl-oxazolidinone Diels-Alder reactions^{3a-e} utilizing complexes identified as 7 and 8 (prepared from 3 and 9, respectively) and Oh^{3f} has reported asymmetric Diels-Alder reactions of methyl acrylate and dimethyl fumarate with stoichiometric quantities (or larger) of a Ti(IV)-(R,R)-hydrobenzoin complex. There are apparent differences, however, between the diol complex formed from the "Ti(IV)-solid" as described above and the Narasaka/Corey complexes.⁸ We have prepared the catalyst 7 by the Narasaka method and successfully reproduced the asymmetric 3-(2-butenoyl)-2-oxazolidinone/cyclopentadiene reaction. In our hands, stoichiometric amounts of complex 7 failed to promote the quinone Diels-Alder reactions at -78°C although upon warming a reaction of 1a with 2a to room temperature, a 55% yield of 4a was found with less than 20% ee. Catalytic quantities of the asymmetric Ti(IV) complex 8 as prepared by the Corey method did promote the quinone Diels-Alder reactions, however, the reactions were slower, required higher temperatures (room temperature) and the yields and ee's were lower (\sim 45% ee) than those reported in the Table. Interestingly, use of stoichiometric amounts of catalyst 8 in reactions of quinone 1a with diene 2a gave 4a in only 5% ee. More importantly from the standpoint of synthetic design is that the complexes formed from either diol 3 or 9 by the Corev method gave the (-)-antipode of the guinone Diels-Alder product 2a whereas the complex formed from either diol 3/9 and the "Ti(IV)-solid" gave the (+)-antipode.⁹ Finally, as noted above, the Narasaka and Corey complexes are true catalysts in promoting reactions of the oxazolidinone dienophiles; ≤20 mol% of the complexes (with respect to the dienophile) are required. Attempts to employ catalytic quantities of the "Ti(IV)-solid"-diol 3 complex in the quinone Diels-Alder reactions either with or without added 4 Å molecular sieves^{3a} failed (~5% ee). Similarly, in Oh's work^{3f}, the acrylate and fumarate Diels-Alder reactions required at least stoichiometric amounts of the chiral Ti(IV)-dihydrobenzoin complex for good asymmetric induction.

Tanc. U	symmetric Di	13-MIGGI IN		1410mior 2 - 1 - 4	concodamones with the	
Entry	<u>Ouinone</u>	Diene	Product	% Yield	Diastercomeric or Regioisomeric Ratio	<u>% cc</u> °
1	1a	2a	4a	88	na ,	63
2	1a	2b	4b	94	>20:1 ^ª	80
3	1a	2 c°	4 c	90	>20:1	92
4	1a	2 d	4 d	91	18:1	81
5	1a	2 e	4 e	· 100	>20:1	68
6	1a	2f	4 f	94	8.2:1	67
7	1a	2 g	4 g	97	8.9:1	82
8	1b	2 Ď	5ă	. 89	>20:1	66
ğ	15	2 c°	5 b	76	>20:1	54
10	1b	2 đ	5 c	89	31:1	48

Table.	Asymmetric Diels-Alder	Reactions of 2	-Methoxy-1,4-benzoqu	inones with Dienes."
--------	------------------------	----------------	----------------------	----------------------

^a All reactions were conducted at -78°C in PhCH₃:CH₂Cl₂ (~5:2; the CH₂Cl₂ is required for quinone solubility).
^b Determined by 500 MHz ¹H NMR. The structure of the minor isomer was not determined.^c Determined by 500 MHz ¹H NMR in the presence of (R)-(-)-2.2.2-trifluoro-1-(9-anthrvl)ethanol as a chiral solvating agent.

^d Only one isomer was detected by 500 MHz ¹H NMR. ^e The diene was used as a 2.5:1 ratio of trans:cis isomers.

Figure. Summary of representative NOE enhancements upon irradiation of the Me group at C-10 in adducts 4 and of the C-5 Me group in 5. The chemical shifts of the hydrogen signals were determined by HMBC experiments, when necessary.

In summary, products from 2-methoxy-1,4-benzoquinone Diels-Alder reactions are available in large quantity and moderate to excellent ee utilizing the method reported herein. Although the chiral Ti(IV)-diol complex used would seem to be similar to other Ti(IV)-diol complexes reported previously, there appear to be significant differences. Efforts are underway to identify the structure of the "Ti(IV)-solid" and the Ti(IV)-diol complex and to modify the system so that catalytic quantities of the complexes are effective in promoting the asymmetric quinone Diels-Alder reactions.

ACKNOWLEDGEMENTS. This research was supported financially by the National Institutes of Health and the National Science Foundation. TAE acknowledges a fellowship from the Alfred P. Sloan Foundation and a granteeship from Eli Lilly and Company and MAL acknowledges a NIH predoctoral fellowship (GM 07775).

References and Notes.

- For examples, see a) Desimoni, G.; Tacconi, G.; Barco, A.; Piero-Pollini "National Products Synthesis Through Pericyclic Reactions" ACS Monograph 180; American Chemical Society: Washington, D.C., 1983. See also, b) Benchikn le-Hocine, M.; Do Khac, D.; Fétizon, M.; Guir, F.; Guo, Y.; Prangé, T. Tetrahedron Lett. 1992 1443. c) Eaton, P. E.; Or, Y. S.; Branca, S. J. J. Am. Chem. Soc. 1981 108, 2134. d) Mehta, G.; Reddy, A. V.; Murthy, A. N.; Reddy, D. S. J. Chem. Soc., Chem. Commun. 1982 540. e) Engler, T. A.; Sampath, N.; Naganathan, S.; Vander Velde, D.; Takusagawa, F.; Yohannes, D. J. Org. Chem. 1989 54, 5712.
- Notable studies include those of Dauben, Trost and Stoodley on reactions of chiral dienes with 1,4benzoquinones, and those of Kelley and Yamamoto on the development of a chiral catalyst for reactions of juglone and juglone analogs. See, a) Dauben, W. G.; Bunce, R. A. Tetrahedron Lett. 1982 4875. b) Trost, B. M.; Ippen, I.; Vladuchick, W. C. J. Am. Chem. Soc. 1977 99, 8116. c) Trost, B. M.; Caldwell, C. G.; Murayama, E.; Heissler, D. J. Org. Chem. 1983 48, 3252. d) Trost, B. M.; O'Krongly, D.; Belletire, J. L. J. Am. Chem. Soc. 1980 102, 7595. e) Beagley, B.; Curtis, A. D. M.; Pritchard, R. G.; Stoodley, R. J. J. Chem. Soc., Chem. Commun. 1991 119. f) Larsen. D. S.; Stoodley, R. J. Tetrahedron 1990 46, 4711 and references cited therein. g) Kelly, T. R.; Whiting, A.; Chandrakumar, N. S. J. Am. Chem. Soc. 1986 108, 3510. h) Maruoka, K.; Sakurai, M.; Fujiwara, J.; Yamamoto, J. Tetrahedron Lett. 1986 4895. i) Maruoka, K., Itoh, T.; Shirasaka, T.; Yamamoto, J. J. Am. Chem. Soc. 1988 110, 310. For a review, see i) Tashner, M. J. In "Organic Synthesis: Theory and Applications, Vol. 1"; Hudlicky, T., Ed.; Jai Press: Greenwich, CT, 1989; 1
- a) Narasaka, K.; Iwasawa, N.; Inoue, M.; Yamada, T.; Nakashima, M.; Sugimori, J. J. Am. Chem. Soc. 1989 111, 5340. b) Iwasawa, N.; Sugimori, J.; Kawase, Y.; Narasaka, K. Chem. Lett. 1989 1947.
 c) Iwasawa, N.; Hayashi, Y.; Sakurai, H.; Narasaka, K. Chem. Lett. 1989 1581. d) Narasaka, K.; Tanaka, H.; Kanai, F. Bull. Chem. Soc. Jpn. 1991 64, 387. e) Corey, E. J., Matsumura, Y. Tetrahedron Lett. 1991 6269. f) Devine, P. N.; Oh, T. J. Org. Chem. 1992 57, 396. g) Quinkert, G.; del Grosso, M.; Bucher, A.; Bauch, M.; Döring, W.; Bats, J. W.; Dürner, G. Tetrahedron Lett. 1992 3617. For reviews see h) Tomioka K. Synthesis 1990 541. i) Narasaka, K. Synthesis 1991 1.
- 4. Engler, T. A.; Letavic, M. A.; Reddy, J. P. J. Am. Chem. Soc. 1991 113, 5068.
- 5. The diastereoselectivity observed in each reaction is in agreement with that previously reported; see a) Bohlmann, F.; Mathar, N.; Schwarz, H. Chem. Ber. 1977 110, 2028. b) Hendrickson, J. B.; Singh, V. J.Chem. Soc.; Chem. Commun. 1983 837.
- 6. The configuration was confirmed by the anomalous dispersion effect.
- 7. Initial investigations utilized CH₂Cl₂ or toluene solutions of TiCl₄ and Ti(OiPr)₄ mixed just prior to addition of the diol. The TiCl₄:Ti(OiPr)₄: diol ratio was 1:1:1. Although this system did give enantionmerically enriched products in reactions of the dienes with the quinones, the results were not as consistently reproducible as those with the "Ti(IV)-solid".
- 8. The main difference is apparently due to the nature of the Ti(IV) before addition of the diol. The ¹H and ¹³C -NMR spectra of the "Ti(IV)-solid" [¹H-(300 MHz, CDCl₃) δ 1.60 (d, J=6Hz, 7H), 5.15 (septet, J=6Hz, 1H); ¹³C-(125 MHz, CDCl₃) δ 24.76, 95.55] is quite different than that of TiCl₂(OiPr)₂ [¹H-(300 MHz, CDCl₃) δ 1.42 (d, J=6Hz, 7H), 4.85 (septet; J=6Hz, 1H); ¹³C¹⁰-(δ 25.5, 88] which is used by Narasaka and is formed as a white solid from a 1:1 mixture of TiCl₄ and Ti(OiPr)₄ in hexane.
- 9. Narasaka has also noted an instance of a reversal in enantioselectivity between reactions promoted by catalytic versus stoichiometric quantities of 7; see Narasaka, K.; Inoue, M.; Yamada, T., Chem. Lett. 1986, 1967.
- 10. Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1990 112, 3949.

(Received in USA 27 July 1992)